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Abstract. We study the scattering of atoms, rotons and phonons at the free surface of4He
at normal incidence and calculate the evaporation, condensation and reflection probabilities.
Assuming elastic one-to-one processes and using general properties of the scattering matrix, such
as unitarity and time reversal, we argue that all nonzero probabilities can be written in terms
of a single energy-dependent parameter. Quantitative predictions are obtained using linearized
time-dependent density functional theory.

Superfluid helium at low temperature exhibits the peculiar phenomenon of quantum
evaporation. Elementary excitations, such as rotons and high-energy phonons, propagate
in the liquid with long mean free path and with an energy which can exceed the binding
energy of atoms in the liquid. Thus, when an elementary excitation impinges upon the free
surface it may eject an atom from the liquid through a quantum process. The scattering of
excitations and atoms at the free surface of the superfluid have been extensively studied in
recent years (see for instance [1]–[3] and references therein), but the comparison between
theory and experiments is still unsatisfactory. Previous theoretical approaches to the problem
of quantum evaporation made use of semiclassical approximations [4, 5]. Recently [6, 7]
we have calculated the probability of evaporation, condensation and reflection of rotons and
atoms using a time-dependent density functional (TDDF) theory. The density functional has
proven to be a powerful method to investigate various structural features of inhomogeneous
superfluid helium [8] including static and dynamic properties of the free surface, droplets and
films. When applied to quantum evaporation, the linearized TDDF theory accounts only for
one-to-one processes, but includes quantum effects beyond the semiclassical approximation.
So far we have restricted the analysis to the phonon forbidden region [6, 7], corresponding
to incidence angles such that phonons are excluded by energy and momentum conservation.
In the present work we apply the same theory to the case of scattering at normal incidence,
where atoms and rotons as well as phonons take part in the scattering processes. We show
that the complexity of the scattering processes is dramatically reduced on the basis of simple
arguments based on symmetry properties of the scattering matrix and threshold effects. The
final result is that all nonzero probabilities can be expressed in terms of a single energy-
dependent parameter. The numerical solution of the TDDF equations confirms this picture
and provides quantitative predictions for the probabilities as a function of energy.

In figure 1 we show the phonon–roton dispersion curve in bulk liquid. The phonon
branch goes fromq = 0 up to the maxon (1∗). On the right of the maxon the slope is
negative and corresponds to the dispersion of R− rotons, that is, rotons with negative group
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Figure 1. Phonon–roton dispersion in liquid4He. The dashed line is the threshold|µ| = 7.15 K
for atom evaporation.

velocity. Then the slope becomes positive again for R+ rotons on the right of the roton
minimum (1). The threshold for atom evaporation at normal incidence coincides with
the chemical potential,|µ| = 7.15 K (dashed line): only excitations with energy higher
than |µ| can produce quantum evaporation. The energy of an evaporated atom is simply
|µ|+h̄2q2/2m. For scattering at normal incidence, the problem is unidimensional; the wave
vectorq is orthogonal to the free surface and is not a conserved quantity, since the surface
breaks translational invariance. As already said, we consider elastic processes in which the
energyh̄ω is conserved.

Four types of excitation interact at the free surface of the superfluid: atoms (a), phonons
(p) and rotons with positive(+) and negative(−) group velocity. One can define the
scattering matrix by means of9out = S9in, where9in and9out are the incoming and
outgoing asymptotic solutions, respectively. The matrix elementSij connects a particular
input (i) and output (j ) channel, withi, j = a, p,+,−, and depends on energy and incident
angle. It determines the probability associated with each scattering process byPij = |Sij |2.
These channels correspond to atom, phonon and roton excitation states. Thus, there are 16
complex scattering matrix elementsSij , and hence 16 probabilitiesPij , to be determined.
The unitarity and the time reversal symmetry (t → −t) of S imply S† = S−1 and
S∗ = S−1, respectively. Combining these two conditions one finds that the scattering matrix
elements must satisfy the general propertySij = Sji , reducing the number of independent
matrix elements to ten. Furthermore, the unitarity conditionS∗S = 1 gives ten additional
constraints. For instance, if the incident excitation is of typei, then one has the unitarity
conditions ∑

j

|Sij |2 = 1 (1)

where i, j = a, p,+,−, yielding four linear combinations of matrix elements. The other
six conditions are

S∗aaSap + S∗apSpp + S∗a−S−p + S∗a+S+p = 0 (2)

S∗aaSa− + S∗apSp− + S∗a−S−− + S∗a+S+− = 0 (3)

S∗aaSa+ + S∗apSp+ + S∗a−S−+ + S∗a+S++ = 0 (4)

S∗paSa− + S∗ppSp− + S∗p−S−− + S∗p+S+− = 0 (5)

S∗paSa+ + S∗ppSp+ + S∗p−S−+ + S∗p+S++ = 0 (6)
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S∗−aSa+ + S∗−pSp+ + S∗−−S−+ + S∗−+S++ = 0. (7)

We will now combine these rigorous relations with further arguments about threshold effects
and momentum exchange at the surface in order to reduce the number of relevant unknowns.

The roton minimum represents the threshold energy to excite R− and R+ rotons in the
liquid. These excitations coincide at1 and, on the basis of symmetry arguments, one can
prove [9] that the mode-change reflection between R− and R+ is the dominant one just above
1 (P+− ' 1) and that the other probabilities involving R− and R+ are small. Conversely,
below it only phonons and atoms are present. Among the different processes the phonon↔
atom scattering is expected to be favoured (Ppa ' 1), since it implies the smallest change
of momentum. In fact, the normal reflection of a phonon or an atom would imply a much
larger momentum transferred to the surface and this seems unlikely for a smooth surface
such as that of helium, except near the threshold ¯hω ' |µ| where the atom momentum goes
to zero and full reflection takes place. Now, assumingP+− ' 1 andPpa ' 1 in the unitarity
conditions (1), one finds that all the remaining probabilities should vanish close to1.

Similarly, the maxon is a threshold for phonons and R− rotons and one expects the
mode-change reflection between R− and phonons to dominate just below1∗ (Pp− ' 1).
Just above it, one has only R+ and atoms. For the same argument of smallest momentum
transferred to the surface, the R+ ↔ atom scattering should be greatly favoured (P+a ' 1)
with respect to the normal reflection of rotons and atoms. PuttingPp− ' 1 andP+a ' 1 in
the unitarity conditions one finds again that the other probabilities have to vanish near1∗.

The above arguments suggest thatPpa andP+− decrease from unity to zero on increasing
the energy from1 to1∗, while Pp− andP+a increase from zero to unity in the same range.
All probabilities should be smooth functions of the energy. Those that are zero at both1

and1∗ are expected to be small everywhere in between. If we make the assumption that
they vanish for any value of energy (1 6 h̄ω 6 1∗)

Paa = Ppp = P−− = P++ = P−a = P+p = 0 (8)

we find simple and useful relations among the remaining nonzero probabilities. In fact, by
inserting assumption (8) into the unitarity conditions (1)–(7), after some simple algebra one
obtains [10]

Ppa = P+− = 1− Pp− = 1− P+a . (9)

This means that all nonzero probabilities at normal incidence can be written in terms of
a single parameter. This result is expected to hold for any theory accounting only for
one-to-one elastic processes.

In the remaining part of the paper we show that the numerical calculation ofPij , within
TDDF theory, is consistent with the general properties of the scattering matrix and with the
threshold effect near1 and1∗. Furthermore, it confirms the validity of assumption (8).

In order to calculate explicitly the probabilitiesPij one needs a theory for the elementary
excitations of the nonuniform liquid. The theory must provide a spectrum of elementary
excitations close to the experimental one, since the proper energy balance between the
excitations is crucial; moreover, it must allow one to calculate the asymptotic flux of
elementary excitations in a given process, in order to extract the corresponding matrix
elements.

In a density functional approach [6, 7] one assumes the energy of the system to be in
the formE = ∫

drH[9,9∗], where the complex function9 = 8 exp(iS/h̄) is related
to the density and velocity of the superfluid by means ofρ = 82 and v = (1/m)∇S.
We use a phenomenological energy densityH [8] which has been adjusted to provide an
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accurate description of the equation of state, the static response function and the phonon–
roton dispersion law of the bulk liquid. The description of the functional can be found in
our previous papers [7, 8].

The eigenenergies and eigenfunctions of the system are calculated within a TDDF
approach. The propagation of the elementary excitations is described by linearizing the
wave function around the ground state90(r):

9(r, t) = 90(r)+ δ9(r, t). (10)

Far away from the surfaceδ9(r, t) corresponds to the propagation of phonons and rotons
in the liquid and free atoms in the vacuum. Due to linearization, only one-to-one processes
are taken into account. Thus the theory cannot describe inelastic processes, such as decay
into multi-ripplons or multi-phonons.

For practical reasons we work in a slab geometry. The semi-infinite system is simulated
by slabs of liquid with thickness ranging from 50 to 100Å, and centred in a finite box whose
size is of the order of 100–150̊A. The density functional provides also the ground state
density profile of the liquid as the stationary solution of lowest energy. The profile of the
liquid–vacuum interface has a thickness of about 6Å and a shape close to that obtained
with ab initio Monte Carlo calculations (see [8] for details). Choosingz along the normal
to the surface, one can write the wave functionδ9 in the form

δ9(z, t) = f (z) e−iωt + g(z) eiωt . (11)

The quantitiesf (z) andg(z) are real functions, which have to be determined, together with
ω, by solving self-consistently the equations of motion

δ

∫
dt
∫

dr

{
H[9,9∗] − µ99∗ −9∗ih̄ ∂9

∂t

}
= 0 (12)

linearized with respect tof andg. Equations (11) and (12) assume the typical form of the
random phase approximation (RPA) for bosons. In the formalism of the RPA,f (z) and
g(z) take into account the particle–hole and hole–particle transitions, respectively. The two
componentsf andg of the excited states are coupled by the equations of motion (12).

We have solved numerically the linearized TDDF equations in the finite box, obtaining
a set of discrete eigenenergiesω and the corresponding eigenfunctionsf (z) andg(z). For
a givenω, the solution is a stationary state. Inside the slab,f (z) andg(z) are oscillating
functions associated with the propagation of phonons and rotons, whose dispersion law
is shown in figure 1. Outside the slab, where particles are uncorrelated, the functiong(z)

vanishes while the equation forf (z) coincides with the Schrödinger equation for free atoms.
By looking at the Fourier transforms of the signal far away from the surface, both inside and
outside the slab, one can evaluate the asymptotic amplitudes (fi andgi) and the momentum
qi of each type of excitation which contributes toδ9. A fitting procedure has been used in
order to extract the numerical values offi andgi needed for the analysis of the evaporation
rates.

A given scattering process at a certain energy can be obtained as a linear combination of
different stationary solutions at that energy. The latter can be found by slightly varying the
slab thickness (Lslab) and the box size (Lbox). Then, one can evaluate the flux of incoming
and outgoing excitations. In the present linearized TDDF theory, the current associated with
a given elementary excitation is

ji = vi (|fi |2− |gi |2) (13)

where v is its group velocity. From the asymptotic fluxes one can easily evaluate the
evaporation, condensation and reflection probabilities [7].
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Figure 2. ProbabilityP ≡ P+a as a function of energy. The other nonzero probabilities can be
extracted using (9). The energy scale starts from1.

We have first verified that the resulting probabilitiesPij satisfy, within the accuracy
of the calculation, the symmetry propertyPij = Pji and the unitarity conditions (1) in the
whole range of energy ¯hω > |µ|. Explicit results are shown in table 1 for an intermediate
value of energy (¯hω = 11 K). Four states at the same energy are combined to describe
the scattering processes (atom→ atom, phonon, R−, R+), (phonon→ atom, phonon, R−,
R+), (R+ → atom, phonon, R−, R+) and (R− → atom, phonon, R−, R+). The numerical
uncertainty, which is less than±0.05 for all probabilities, originates mainly from the fact
that the states in the linear combinations may be not sufficiently linearly independent [7].

Table 1. ProbabilitiesPij for four different scattering processes (incident atom, phonon, R−
and R+, respectively) described by linear combinations of four states at the same energy (11 K)
and for different values of (Lslab,Lbox ). The unitarity condition, (1), is labelled by6.

Incident exc. Pij 6

Atom Paa = 0.0002 Pap = 0.3384 Pa− = 0.0003 Pa+ = 0.6837 1.0226
Phonon Ppa = 0.3236 Ppp = 0.0020 Pp− = 0.6487 Pp+ = 0.00002 0.9743
R− P−a = 0.0004 P−p = 0.6859 P−− = 0.0013 P−+ = 0.3408 1.0284
R+ P+a = 0.6537 P+p = 0.0001 P+− = 0.3222 P++ = 0.00002 0.9760

We find also that the probabilitiesPaa, Ppp, P−−, P++, P−a, andPp+ are extremely small
at all energies; they turn out to be zero within the present accuracy, confirming the hypothesis
(8) made before. Furthermore, the nonzero probabilities turn out to verify relations (9). It is
therefore possible to resume all the information about the nonzero probabilities in a single
function of energy,P(ω). Let us callP(ω) ≡ P+a. This quantity is plotted in figure 2,
in the energy range1 6 h̄ω 6 1∗. The probability of mode-change scattering between
R− and phonons (Pp−) is equal to the evaporation probability for R+ rotons (P+a); both
probabilities start from zero at the roton minimum and increase to unity at the maxon energy.
The evaporation probability for R+ rotons is equal to unity even above the maxon energy.
The evaporation probability for phonons (Ppa) is equal to that for the mode-change process
between rotons (P+−). They are equal to(1− P+a), so they decrease from unity to zero
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between1 and1∗. It is worth noting that the present results for the evaporation probability
P+a at normal incidence coincide, within the error bar, with those obtained previously in
the phonon forbidden region [7], that is, for R+ rotons impinging at about 15–20◦. The
same is true for the mode-change probabilityP+− [11].

Only a few experimental estimates are available for the probabilitiesPij . Indeed,
by measuring time-of-flight and angular distributions of evaporated atoms, one-to-one
evaporation processes have been clearly seen [1], but a quantitative determination of the
ratio between incoming and outgoing fluxes, and hencePij , is difficult. There are evidences
for a sizable probabilityP+a, which should increase with a trend similar to that in figure 1
[12]. A recent estimate [13] of the phonon→ atom probability, for high-energy phonons
(h̄ω > 10 K), is Ppa ' 0.1. Our theory, in the same range of energy, gives a value
which decreases rapidly from 0.5 to 0. We also find that an incident atom condenses
with probability Pap + Pa+ ' 1 and hence the reflection probabilityPaa is almost zero.
This is in agreement with the observed small reflectivity [2, 3]; but the experiments also
support the idea that the atom condensation might occur through processes such as two-
phonon or multi-ripplon production. The extension of the present formalism to include
such mechanisms, beyond the one-to-one hypothesis, remains an important task, for a more
systematic comparison between theory and experiments.

MG thanks the Generalitat de Catalunya for financial support.
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